
rpi-lgpio 0.5 Documentation
Release 0.5

Dave Jones

Apr 13, 2024

CONTENTS

1 Installation 1

2 Differences 3

3 API Reference 11

4 Changelog 17

5 License 19

Python Module Index 21

Index 23

i

ii

CHAPTER

ONE

INSTALLATION

rpi-lgpio is distributed in several formats. The following sections detail installation from a variety of formats. But
first a warning:

Warning: You cannot install rpi-lgpio and rpi-gpio (aka RPi.GPIO, the library it emulates) at the same time, in
the same Python environment. Both packages attempt to install a module named RPi.GPIO and obviously this
will not work.

1.1 apt/deb package

If your distribution includes rpi-lgpio in its archive of apt packages, then you can simply:

$ sudo apt install python3-rpi-lgpio

If you wish to go back to rpi-gpio:

$ sudo apt remove python3-rpi-lgpio
$ sudo apt install python3-rpi.gpio

1.2 wheel package

If your distribution does not include a “native” packaging of rpi-lgpio, you can also install rpi-lgpio from PyPI1 using
pip. Please note that rpi-lgpio does still depend on lgpio2 so you will need that installed as a dependency.

Note: It is strongly recommended that you install in a virtualenv if persuing this method, in which case you have a
choice as to whether lgpio is provided by a system package (such as apt), or another wheel.

The following sections demonstrate installing from a wheel in a variety of scenarios.
1 https://pypi.org/project/rpi-lgpio/
2 https://pypi.org/project/lgpio/

1

https://pypi.org/project/rpi-lgpio/
https://pypi.org/project/lgpio/

rpi-lgpio 0.5 Documentation, Release 0.5

1.2.1 in venv without system packages

Construct a “clean” virutalenv with no access to system packages, then install rpi-lgpio as a wheel within that vir-
tualenv, trusting it to pull an appropriate lgpio dependency from PyPI as another wheel:

$ python3 -m venv cleanvenv
$ source cleanvenv/bin/activate
(cleanvenv) $ pip3 install rpi-lgpio

1.2.2 in venv with system packages

Install the lgpio dependency as a system package, construct a virtualenv with access to system packages, and install
rpi-lgpio as a wheel within that virtualenv:

$ sudo apt install python3-lgpio
$ sudo apt remove python3-rpi.gpio
$ python3 -m venv --system-site-packages sysvenv
$ source sysvenv/bin/activate
(sysvenv) $ pip3 install rpi-lgpio

Note that in this case we also ensure that we remove any system-level RPi.GPIO installation that may interfere.

1.2.3 outside venv (system-wide)

If you wish to install system-wide with pip, you may need to place sudo in front of the pip (or pip3) commands
too. Please be aware that on modern versions of pip you will need to explicitly accept the risk of trying to co-exist
apt and pip packages as follows:

$ sudo pip3 install --break-system-packages rpi-lgpio

Warning: This is not an advised mode of installation, unless you are quite certain that you know what pip is
going to pull in. Upgrading such an installation is also particularly risky.

2 Chapter 1. Installation

CHAPTER

TWO

DIFFERENCES

Many of the assumptions underlying RPi.GPIO3 – that it has complete access to, and control over, the registers
controlling the GPIO pins – do not work when applied to the Linux gpiochip devices. To that end, while the library
strives as far as possible to be “bug compatible” with RPi.GPIO, there are differences in behaviour that may result in
incompatibility.

2.1 Bug Compatible?

What does being “bug compatible” mean? It is not enough for the library to implement the RPi.GPIO4 API. It must
also:

• Act, as far as possible, in the same way to the same calls with the same values
• Raise the same exception types, with the same messages, in the same circumstances
• Break (i.e. fail to operate correctly) in the same way, as far as possible

This last point may sound silly, but a library is always used in unexpected or undocumented ways by some applications.
Thus anything that tries to take the place of that librarymust domore than simply operate the same as the “documented
surface” would suggest.
That said, given that the underlying assumptions are fundamentally different this will not always be possible…

2.2 Pi Revision

The RPi.GPIOmodule attempts to determine the revision of Raspberry Pi board that it is running on when themodule
is imported by querying /proc/cpuinfo, raising RuntimeError5 at import time if it finds it is not running on
a Raspberry Pi. rpi-lgpio emulates this behaviour, but this can be inconvenient for certain situations including testing,
and usage of rpi-lgpio on other single board computers.
To that end rpi-lgpio permits a Raspberry Pi revision code6 to be manually specified via the environment in the
RPI_LGPIO_REVISION value (when this is set, /proc/cpuinfo is not read at all). For example:

$ RPI_LGPIO_REVISION="c03114" python3
Python 3.10.6 (main, Aug 10 2022, 11:40:04) [GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from RPi import GPIO
>>> GPIO.RPI_INFO
{'P1_REVISION': 3, 'REVISION': 'c03114', 'TYPE': 'Pi 4 Model B',
'MANUFACTURER': 'Sony UK', 'PROCESSOR': 'BCM2711', 'RAM': '4GB'}
>>> exit()
$ RPI_LGPIO_REVISION="902120" python3

(continues on next page)
3 https://pypi.org/project/RPi.GPIO/
4 https://pypi.org/project/RPi.GPIO/
5 https://docs.python.org/3/library/exceptions.html#RuntimeError
6 https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#new-style-revision-codes

3

https://pypi.org/project/RPi.GPIO/
https://pypi.org/project/RPi.GPIO/
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#new-style-revision-codes

rpi-lgpio 0.5 Documentation, Release 0.5

(continued from previous page)
Python 3.10.6 (main, Aug 10 2022, 11:40:04) [GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from RPi import GPIO
>>> GPIO.RPI_INFO
{'P1_REVISION': 3, 'REVISION': '902120', 'TYPE': 'Zero 2 W',
'MANUFACTURER': 'Sony UK', 'PROCESSOR': 'BCM2837', 'RAM': '512M'}
>>> exit()

At present, rpi-lgpio only interprets “new-style7” (6 hex-digit) revision codes, as found in the “Revision” field of
/proc/cpuinfo. The old-style8 (4 hex-digit) revision codes found on the original model B, A, A+, B+, and
Compute Module 1 are not supported. If there is significant demand, this can be added but for the time being only
boards made since the launch of the 2B (which introduced the new-style revision codes) are supported. Specifically,
this includes the following models:

• Zero
• Zero W
• Zero 2W
• 2B
• 3B
• Compute Module 3
• 3A+
• 3B+
• Compute Module 3+
• 4B
• 400
• Compute Module 4
• 5B

Aworkaround for use on old-style boards is to use RPI_LGPIO_REVISION to fake the revision code. For example,
0004 (an old-style model B rev 2) can also be represented by 800012 in the new-style.

$ RPI_LGPIO_REVISION="800012" python3
Python 3.12.2 (main, Apr 2 2024, 18:40:52) [GCC 13.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from RPi import GPIO
>>> GPIO.RPI_INFO
{'P1_REVISION': 2, 'REVISION': '800012', 'TYPE': 'Model B',
'MANUFACTURER': 'Sony UK', 'PROCESSOR': 'BCM2835', 'RAM': '256M'}
>>> exit()

7 https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#new-style-revision-codes
8 https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#old-style-revision-codes

4 Chapter 2. Differences

https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#new-style-revision-codes
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#old-style-revision-codes

rpi-lgpio 0.5 Documentation, Release 0.5

2.3 GPIO Chip

The lgpio library needs to know the number of the /dev/gpiochip device it should open. By default this will be
calculated from the reported Pi Revision (page 3) (which may be customized as detailed in that section). In practice
this means the chip defaults to “4” on the Raspberry Pi Model 5B, and “0” on all other boards.
You may also specify the chip manually using the RPI_LGPIO_CHIP environment variable. For example:

$ ls /dev/gpiochip*
crw------- 1 root root 254, 0 Oct 1 15:00 /dev/gpiochip0
crw------- 1 root root 254, 1 Oct 1 15:00 /dev/gpiochip1
crw------- 1 root root 254, 2 Oct 1 15:00 /dev/gpiochip2
crw------- 1 root root 254, 3 Oct 1 15:00 /dev/gpiochip3
crw-rw----+ 1 root dialout 254, 4 Oct 1 15:00 /dev/gpiochip4
crw------- 1 root root 254, 5 Oct 1 15:00 /dev/gpiochip5
$ RPI_LGPIO_CHIP=5 python3
Python 3.11.5 (main, Aug 29 2023, 15:31:31) [GCC 13.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from RPi import GPIO
>>> GPIO.setmode(GPIO.BCM)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/usr/lib/python3/dist-packages/RPi/GPIO/__init__.py", line 513, in setmode
_chip = _check(lgpio.gpiochip_open(int(chip_num)))

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/lib/python3/dist-packages/lgpio.py", line 645, in gpiochip_open
return _u2i(handle)

^^^^^^^^^^^^
File "/usr/lib/python3/dist-packages/lgpio.py", line 458, in _u2i
raise error(error_text(v))

lgpio.error: 'can not open gpiochip'

This is primarily useful for other boards where the correct gpiochip device is something other than 0.

2.4 Alternate Pin Modes

The gpio_function() (page 14) function can be used to report the current mode of a pin. In RPi.GPIO this
may return several “alternate” mode values including SPI (page 16), I2C (page 16), and HARD_PWM (page 16).
rpi-lgpio will only ever return the basic IN (page 16) and OUT (page 15) values however, as the underlying gpiochip
device cannot report alternate modes.
For example, under RPi.GPIO:

>>> from RPi import GPIO
>>> GPIO.setmode(GPIO.BCM)
>>> GPIO.gpio_function(2) == GPIO.I2C
True

Under rpi-lgpio:

>>> from RPi import GPIO
>>> GPIO.setmode(GPIO.BCM)
>>> GPIO.gpio_function(2) == GPIO.I2C
False
>>> GPIO.gpio_function(2) == GPIO.IN
True

2.3. GPIO Chip 5

rpi-lgpio 0.5 Documentation, Release 0.5

2.5 Stack Traces

While every effort has been made to raise the same exceptions with the same messages as RPi.GPIO, rpi-lgpio
does raise the exceptions from pure Python so the exceptions will generally include a larger stack trace than under
RPi.GPIO. For example, under RPi.GPIO:

>>> from RPi import GPIO
>>> GPIO.setmode(GPIO.BCM)
>>> GPIO.setup(26, GPIO.IN)
>>> GPIO.output(26, 1)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
RuntimeError: The GPIO channel has not been set up as an OUTPUT

Under rpi-lgpio:

>>> from RPi import GPIO
>>> GPIO.setmode(GPIO.BCM)
>>> GPIO.setup(26, GPIO.IN)
>>> GPIO.output(26, 1)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/home/dave/projects/rpi-lgpio/rpi-lgpio/RPi/GPIO.py", line 626, in output
_check_output(mode, 'The GPIO channel has not been set up as an OUTPUT')

File "/home/dave/projects/rpi-lgpio/rpi-lgpio/RPi/GPIO.py", line 242, in _check_
↪→output

raise RuntimeError(msg)
RuntimeError: The GPIO channel has not been set up as an OUTPUT

2.6 Simultaneous Access

Two processes using RPi.GPIO can happily control the same pin. This is simply not permitted by the Linux gpiochip
device and will fail under rpi-lgpio. For example, if another process has reserved GPIO26, and our script also tries
to allocate it:

>>> from RPi import GPIO
>>> GPIO.setmode(GPIO.BCM)
>>> GPIO.setup(26, GPIO.OUT)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/home/dave/projects/rpi-lgpio/rpi-lgpio/RPi/GPIO.py", line 569, in setup
initial = _check(lgpio.gpio_read(_chip, gpio))

File "/home/dave/envs/rpi-lgpio/lib/python3.10/site-packages/lgpio.py", line 894,
↪→ in gpio_read

return _u2i(_lgpio._gpio_read(handle&0xffff, gpio))
File "/home/dave/envs/rpi-lgpio/lib/python3.10/site-packages/lgpio.py", line 461,

↪→ in _u2i
raise error(error_text(v))

lgpio.error: 'GPIO not allocated'

How can you tell if a GPIO is reserved by another process? Use the gpioinfo(1) tool, which is part of the
gpiod package. By default this attempts to read GPIO chip 0, which is fine all Pi’s except the Pi 5 where you will
need to read GPIO chip 4 specifically:

$ gpioinfo 4
gpiochip4 - 54 lines:

line 0: "ID_SDA" unused input active-high
line 1: "ID_SCL" unused input active-high

(continues on next page)

6 Chapter 2. Differences

rpi-lgpio 0.5 Documentation, Release 0.5

(continued from previous page)
line 2: "GPIO2" unused input active-high
line 3: "GPIO3" unused input active-high
line 4: "GPIO4" unused input active-high
line 5: "GPIO5" unused input active-high
line 6: "GPIO6" unused input active-high
line 7: "GPIO7" "spi0 CS1" output active-low [used]
line 8: "GPIO8" "spi0 CS0" output active-low [used]
line 9: "GPIO9" unused input active-high
line 10: "GPIO10" unused input active-high
line 11: "GPIO11" unused input active-high
line 12: "GPIO12" unused input active-high
line 13: "GPIO13" unused input active-high
line 14: "GPIO14" unused input active-high
line 15: "GPIO15" unused input active-high
line 16: "GPIO16" unused input active-high
line 17: "GPIO17" unused input active-high
line 18: "GPIO18" unused input active-high
line 19: "GPIO19" unused input active-high
line 20: "GPIO20" unused input active-high
line 21: "GPIO21" unused input active-high
line 22: "GPIO22" unused input active-high
line 23: "GPIO23" unused input active-high
line 24: "GPIO24" unused input active-high
line 25: "GPIO25" unused input active-high
line 26: "GPIO26" unused input active-high
line 27: "GPIO27" unused input active-high
line 28: "PCIE_RP1_WAKE" unused output active-high
line 29: "FAN_TACH" unused input active-high
line 30: "HOST_SDA" unused input active-high
line 31: "HOST_SCL" unused input active-high
line 32: "ETH_RST_N" "phy-reset" output active-low [used]
line 33: "-" unused input active-high
line 34: "CD0_IO0_MICCLK" "cam0_reg" output active-high [used]
line 35: "CD0_IO0_MICDAT0" unused input active-high
line 36: "RP1_PCIE_CLKREQ_N" unused input active-high
line 37: "-" unused input active-high
line 38: "CD0_SDA" unused input active-high
line 39: "CD0_SCL" unused input active-high
line 40: "CD1_SDA" unused input active-high
line 41: "CD1_SCL" unused input active-high
line 42: "USB_VBUS_EN" unused output active-high
line 43: "USB_OC_N" unused input active-high
line 44: "RP1_STAT_LED" "PWR" output active-low [used]
line 45: "FAN_PWM" unused output active-high
line 46: "CD1_IO0_MICCLK" "cam1_reg" output active-high [used]
line 47: "2712_WAKE" unused input active-high
line 48: "CD1_IO1_MICDAT1" unused input active-high
line 49: "EN_MAX_USB_CUR" unused output active-high
line 50: "-" unused input active-high
line 51: "-" unused input active-high
line 52: "-" unused input active-high
line 53: "-" unused input active-high

The [used] suffixes indicate which GPIOs are reserved by other processes. In the output above we can see that
GPIOs 7 and 8 are reserved. As it happens, these are reserved by the kernel because we have dtparam=spi=on
in our boot configuration to enable the kernel SPI devices (/dev/spidev0.0 and /dev/spidev0.1). As a
result, these GPIOs cannot be used by rpi-lgpio because the kernel will not let anything else reserve them. They can
only be used for SPI via those kernel devices, and the only way to release those GPIOs would be to change our kernel
/ boot configuration.
In other cases we may find that a GPIO is temporarily reserved by a process. For example, the following trivial script
will reserve GPIO21.

2.6. Simultaneous Access 7

rpi-lgpio 0.5 Documentation, Release 0.5

from time import sleep
from RPi import GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setup(21, GPIO.OUT)
while True:

sleep(1)

If we again query gpioinfo(1) while it is running we will see the following:

$ gpioinfo 4 | grep GPIO21
line 21: "GPIO21" "lg" output active-high [used bias-

↪→disabled]

However, this reservation will disappear when the process dies.

Note: If you receive the GPIO not allocated error in your script, please check the output of gpioinfo(1)
to see if the GPIO you want to use is reserved by something else.

2.7 Debounce

Debouncing of signals works fundamentally differently in RPi.GPIO, and in lgpio9 (the library underlying rpi-lgpio).
Rather than attempt to add more complexity in between users and lgpio, which would also inevitably slow down
edge detection (with all the attendant timing issues for certain applications) it is likely preferable to just live with this
difference, but document it thoroughly.
RPi.GPIO debounces signals by tracking the last timestamp at which it saw a specified edge and suppressing reports
of edges that occur within the specified number of milliseconds after that.
lgpio (and thus rpi-lgpio) debounces by waiting for a signal to be stable for the specified number of milliseconds
before reporting the edge.
For some applications, there will be little/no difference other than rpi-lgpio reporting an edge a few milliseconds
later than RPi.GPIO would (specifically, by the amount of debounce requsted). The following diagram shows the
waveform from a “bouncy” switch being pressed once, along with the points in time where RPi.GPIO and rpi-lgpio
would report the rising edge when debounce of 3ms is requested:

0ms 2ms 4ms 6ms 8ms
| | | | |
| ┌─┐ ┌─┐ ┌─────────────────┐
| │ │ │ │ │ : │
| │ │ │ │ │ : │
───────┘ └─┘ └─┘ : └────────────────────────

: :
: :

RPi.GPIO rpi-lgpio

RPi.GPIO reports the edge at 2ms, then suppresses the edges at 3ms and 4ms because they are within 3ms of the
last edge. By contrast, rpi-lgpio ignores the first and second rising edges (because they didn’t stay stable for 3ms) and
only reports the third edge at 7ms (after it’s spent 3ms stable).
However, consider this same scenario if debounce of 2ms is requested:

0ms 2ms 4ms 6ms 8ms
| | | | |
| ┌─┐ ┌─┐ ┌─────────────────┐

(continues on next page)
9 https://abyz.me.uk/lg/py_lgpio.html

8 Chapter 2. Differences

https://abyz.me.uk/lg/py_lgpio.html

rpi-lgpio 0.5 Documentation, Release 0.5

(continued from previous page)
| │ │ │ │ │ : │
| │ │ │ │ │ : │
───────┘ └─┘ └─┘ : └────────────────────────

: : :
: : :

RPi.GPIO RPi.GPIO rpi-lgpio

In this case, RPi.GPIO reports the switch twice because the third edge is at least 2ms after the first edge. However,
rpi-lgpio only reports the switch once because only one edge stayed stable for 2ms. Also note in this case, that
rpi-lgpio’s report time has moved back to 6ms because it’s not waiting as long for stability.

Note: This implies that you may find shorter debounce periods preferable when working with rpi-lgpio, than with
RPi.GPIO. They will still debounce effectively, but will reduce the delay in reporting edges.

One final scenario to consider is a waveform of equally spaced, repeating pulses (like PWM) every 2ms:

0ms 2ms 4ms 6ms 8ms 10ms 12ms
| | | | | | |
| ┌────┐ ┌────┐ ┌────┐ ┌────┐ ┌────┐ ┌────┐ ┌──
| │ │ │ │ │ │ │ │ │ │ │ │ │
| │ │ │ │ │ │ │ │ │ │ │ │ │
───────┘ └──┘ └──┘ └──┘ └──┘ └──┘ └──┘

: : : :
: : : :

RPi.GPIO RPi.GPIO RPi.GPIO RPi.GPIO

If we request rising edge detection with a debounce of 3ms, RPi.GPIO reports half of the edges; it’s suppressing
every other edge as they occur within 3ms of the edge preceding them. rpi-lgpio, on the other hand, reports no edges
at all because none of them stay stable for 3ms.

2.8 PWM on inputs

RPi.GPIO (probably erroneously) permits PWM objects to continue operating on pins that are switched to inputs:

>>> from RPi import GPIO
>>> GPIO.setmode(GPIO.BCM)
>>> GPIO.setup(26, GPIO.OUT)
>>> p = GPIO.PWM(26, 1000)
>>> p.start(75)
>>> GPIO.setup(26, GPIO.IN)
>>> p.stop()
>>> p.start(75)
>>> p.stop()

This will not work under rpi-lgpio:

>>> from RPi import GPIO
>>> GPIO.setmode(GPIO.BCM)
>>> GPIO.setup(26, GPIO.OUT)
>>> p = GPIO.PWM(26, 1000)
>>> p.start(75)
>>> GPIO.setup(26, GPIO.IN)
>>> p.stop()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/home/dave/projects/rpi-lgpio/rpi-lgpio/RPi/GPIO.py", line 190, in stop
lgpio.tx_pwm(_chip, self._gpio, 0, 0)

(continues on next page)

2.8. PWM on inputs 9

rpi-lgpio 0.5 Documentation, Release 0.5

(continued from previous page)
File "/home/dave/envs/rpi-lgpio/lib/python3.10/site-packages/lgpio.py", line␣

↪→1074, in tx_pwm
return _u2i(_lgpio._tx_pwm(

File "/home/dave/envs/rpi-lgpio/lib/python3.10/site-packages/lgpio.py", line 461,
↪→ in _u2i

raise error(error_text(v))
lgpio.error: 'bad PWM micros'

Though note that the error occurs when the PWM (page 14) object is next acted upon, rather than at the point when
the GPIO is switched to an input.

10 Chapter 2. Differences

CHAPTER

THREE

API REFERENCE

The API of rpi-lgpio (naturally) follows that of rpi-gpio (aka RPi.GPIO) as closely as possible. As such the following
is simply a re-iteration of that API.

3.1 Initialization

RPi.GPIO.setmode(new_mode)
Set up the numbering mode to use for the pins on the board. The options for new_mode are:

• BOARD (page 15) - Use Raspberry Pi board numbers
• BCM (page 15) - Use Broadcom GPIO 00..nn numbers

If a numbering mode has already been set, and new_mode is not the same as the result of getmode()
(page 11), a ValueError10 is raised.

Parameters
new_mode (int11) – The new numbering mode to apply

RPi.GPIO.getmode()

Get the numbering mode used for the pins on the board. Returns BOARD (page 15), BCM (page 15) or None12.
RPi.GPIO.setup(chanlist, direction, pull_up_down=20, initial=None)

Set up a GPIO channel or iterable of channels with a direction and (optionally, for inputs) pull/up down control,
or (optionally, for outputs) and initial state.
The GPIOs to affect are listed in chanlist which may be any iterable. The direction is either IN (page 16) or
OUT (page 15).
If direction is IN (page 16), then pull_up_down may specify one of the values PUD_UP (page 15) to set the
internal pull-up resistor, PUD_DOWN (page 15) to set the internal pull-down resistor, or the default PUD_OFF
(page 15) which disables the internal pulls.
If direction is OUT (page 15), then initial may specify zero or one to indicate the initial state of the output.

Parameters

• chanlist (list13 or tuple14 or int15) – The list of GPIO channels to setup
• direction (int16) – Whether the channels should act as inputs or outputs
• pull_up_down (int17 or None) – The internal pull resistor (if any) to enable for
inputs

• initial (bool18 or int19 or None) – The initial state of an output
10 https://docs.python.org/3/library/exceptions.html#ValueError
11 https://docs.python.org/3/library/functions.html#int
12 https://docs.python.org/3/library/constants.html#None

11

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

rpi-lgpio 0.5 Documentation, Release 0.5

RPi.GPIO.cleanup(chanlist=None)
Reset the specified GPIO channels (or all channels if none are specified) to INPUT with no pull-up / pull-down
and no event detection.

Parameters
chanlist (list20 or tuple21 or int22 or None) – The channel, or channels to
clean up

3.2 Pin Usage

RPi.GPIO.input(channel)

Input from a GPIO channel. Returns 1 or 0.
This can also be called on a GPIO output, in which case the value returned will be the last state set on the
GPIO.

Parameters
channel (int23) – The board pin number or BCM number depending on setmode()
(page 11)

RPi.GPIO.output(channel, value)
Output to a GPIO channel or list of channels. The value can be the integer LOW (page 16) or HIGH (page 16),
or a list of integers.
If a list of channels is specified, with a single integer for the value then it is applied to all channels. Otherwise,
the length of the two lists must match.

Parameters

• channel (list24 or tuple25 or int26) – The GPIO channel, or list of GPIO
channels to output to

• value (list27 or tuple28 or int29) – The value, or list of values to output
13 https://docs.python.org/3/library/stdtypes.html#list
14 https://docs.python.org/3/library/stdtypes.html#tuple
15 https://docs.python.org/3/library/functions.html#int
16 https://docs.python.org/3/library/functions.html#int
17 https://docs.python.org/3/library/functions.html#int
18 https://docs.python.org/3/library/functions.html#bool
19 https://docs.python.org/3/library/functions.html#int
20 https://docs.python.org/3/library/stdtypes.html#list
21 https://docs.python.org/3/library/stdtypes.html#tuple
22 https://docs.python.org/3/library/functions.html#int
23 https://docs.python.org/3/library/functions.html#int
24 https://docs.python.org/3/library/stdtypes.html#list
25 https://docs.python.org/3/library/stdtypes.html#tuple
26 https://docs.python.org/3/library/functions.html#int
27 https://docs.python.org/3/library/stdtypes.html#list
28 https://docs.python.org/3/library/stdtypes.html#tuple
29 https://docs.python.org/3/library/functions.html#int

12 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

rpi-lgpio 0.5 Documentation, Release 0.5

3.3 Edge Detection

RPi.GPIO.wait_for_edge(channel, edge, bouncetime=None, timeout=None)
Wait for an edge on the specified channel. Returns channel or None30 if timeout elapses before the specified
edge occurs.

Note: Debounce works significantly differently in rpi-lgpio than it does in rpi-gpio; please see Debounce
(page 8) for more information on the differences.

Parameters
• channel (int31) – The board pin number or BCM number depending on setmode()
(page 11) to watch for changes

• edge (int32) – One of the constants RISING (page 16), FALLING (page 16), or BOTH
(page 16)

• bouncetime (int33 or None) – Time (in ms) used to debounce signals
• timeout (int34 or None) – Maximum time (in ms) to wait for the edge

RPi.GPIO.add_event_detect(channel, edge, callback=None, bouncetime=None)
Start background edge detection on the specified GPIO channel.
If callback is specified, it must be a callable that will be executed when the specified edge is seen on the GPIO
channel. The callable must accept a single parameter: the channel on which the edge was detected.

Note: Debounce works significantly differently in rpi-lgpio than it does in rpi-gpio; please see Debounce
(page 8) for more information on the differences.

Parameters

• channel (int35) – The board pin number or BCM number depending on setmode()
(page 11) to watch for changes

• edge (int36) – One of the constants RISING (page 16), FALLING (page 16), or BOTH
(page 16)

• callback (callable or None) – The callback to run when an edge is detected;
must take a single integer parameter of the channel on which the edge was detected

• bouncetime (int37 or None) – Time (in ms) used to debounce signals

RPi.GPIO.add_event_callback(channel, callback)
Add a callback to the specified GPIO channel which must already have been set for background edge detection
with add_event_detect() (page 13).

Parameters
• channel (int38) – The board pin number or BCM number depending on setmode()
(page 11) to watch for changes

30 https://docs.python.org/3/library/constants.html#None
31 https://docs.python.org/3/library/functions.html#int
32 https://docs.python.org/3/library/functions.html#int
33 https://docs.python.org/3/library/functions.html#int
34 https://docs.python.org/3/library/functions.html#int
35 https://docs.python.org/3/library/functions.html#int
36 https://docs.python.org/3/library/functions.html#int
37 https://docs.python.org/3/library/functions.html#int

3.3. Edge Detection 13

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

rpi-lgpio 0.5 Documentation, Release 0.5

• callback – The callback to run when an edge is detected; must take a single integer
parameter of the channel on which the edge was detected

RPi.GPIO.event_detected(channel)
Returns True39 if an edge has occurred on the specified channel since the last query of the channel (if any).
Querying this will also reset the internal edge detected flag for this channel.
The channel must previously have had edge detection enabled with add_event_detect() (page 13).

Parameters
channel (int40) – The board pin number or BCM number depending on setmode()
(page 11)

3.4 Miscellaneous

RPi.GPIO.gpio_function(channel)
Return the current GPIO function (IN (page 16), OUT (page 15), HARD_PWM (page 16), SERIAL (page 16),
I2C (page 16), SPI (page 16)) for the specified channel.

Note: This function will only return IN (page 16) or OUT (page 15) under rpi-lgpio as the underlying kernel
device cannot report the alt-mode of GPIO pins.

Parameters
channel (int41) – The board pin number or BCM number depending on setmode()
(page 11)

RPi.GPIO.setwarnings(value)
Enable or disable warning messages. These are mostly produced when calling setup() (page 11) or
cleanup() (page 12) to change channel modes.

3.5 PWM

class RPi.GPIO.PWM(channel, frequency)
Initializes and controls software-based PWM (Pulse Width Modulation) on the specified channel at frequency
(in Hz).
Call start() (page 14) and stop() (page 15) to generate and stop the actual output respectively.
ChangeFrequency() (page 14) and ChangeDutyCycle() (page 14) can also be used to control the
output.

Note: Letting the PWM (page 14) object go out of scope (and be garbage collected) will implicitly stop the
PWM.

ChangeDutyCycle(dc)

Changes the duty cycle (percentage of the time that the pin is “on”) to dc.
ChangeFrequency(frequency)

Changes the frequency of rising edges output by the pin.

38 https://docs.python.org/3/library/functions.html#int
39 https://docs.python.org/3/library/constants.html#True
40 https://docs.python.org/3/library/functions.html#int
41 https://docs.python.org/3/library/functions.html#int

14 Chapter 3. API Reference

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

rpi-lgpio 0.5 Documentation, Release 0.5

start(dc)
Starts outputting a wave on the assigned pin with a duty-cycle (which must be between 0 and 100) given
by dc.

Parameters
dc (float42) – The duty-cycle (the percentage of time the pin is “on”)

stop()

Stops outputting a wave on the assigned pin, and sets the pin’s state to off.

3.6 Constants

RPi.GPIO.RPI_INFO

A dictionary that provides information about the model of Raspberry Pi that the library is loaded onto. Includes
the following keys:
P1_REVISION

The revision of the P1 header. 0 indicates no P1 header (typical on the compute module range), 1 and 2
vary on the oldest Raspberry Pimodels, and 3 is the typical 40-pin header present on all modern Raspberry
Pis.

REVISION
The hex board revision code43 as a str44.

TYPE
The name of the Pi model, e.g. “Pi 4 Model B”

MANUFACTURER
The name of the board manufacturer, e.g. “Sony UK”

PROCESSOR
The name of the SoC used on the board, e.g. “BCM2711”

RAM
The amount of RAM installed on the board, e.g. “4GB”

The board revision can be overridden with the RPI_LGPIO_REVISION environment variable; see Pi Revi-
sion (page 3) for further details.

RPi.GPIO.RPI_REVISION

The same as the P1_REVISION key in RPI_INFO (page 15)
RPi.GPIO.BOARD

Indicates to setmode() (page 11) that physical board numbering is requested
RPi.GPIO.BCM

Indicates to setmode() (page 11) that GPIO numbering is requested
RPi.GPIO.PUD_OFF

Used with setup() (page 11) to disable internal pull resistors on an input
RPi.GPIO.PUD_DOWN

Used with setup() (page 11) to enable the internal pull-down resistor on an input
RPi.GPIO.PUD_UP

Used with setup() (page 11) to enable the internal pull-up resistor on an input

42 https://docs.python.org/3/library/functions.html#float
43 https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#new-style-revision-codes
44 https://docs.python.org/3/library/stdtypes.html#str

3.6. Constants 15

https://docs.python.org/3/library/functions.html#float
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#new-style-revision-codes
https://docs.python.org/3/library/stdtypes.html#str

rpi-lgpio 0.5 Documentation, Release 0.5

RPi.GPIO.OUT

Used with setup() (page 11) to set a GPIO to an output, and gpio_function() (page 14) to report a
GPIO is an output

RPi.GPIO.IN

Used with setup() (page 11) to set a GPIO to an input, and gpio_function() (page 14) to report a
GPIO is an input

RPi.GPIO.HARD_PWM

RPi.GPIO.SERIAL

RPi.GPIO.I2C

RPi.GPIO.SPI

Used with gpio_function() (page 14) to indicate “alternate” modes of certain GPIO pins.

Note: In rpi-lgpio these values will never be returned as the kernel device cannot report if pins are in alternate
modes.

RPi.GPIO.LOW = 0

Used with output() (page 12) to turn an output GPIO off
RPi.GPIO.HIGH = 1

Used with output() (page 12) to turn an output GPIO on
RPi.GPIO.RISING

Used with wait_for_edge() (page 13) and add_event_detect() (page 13) to specify that rising
edges only should be sampled

RPi.GPIO.FALLING

Used with wait_for_edge() (page 13) and add_event_detect() (page 13) to specify that falling
edges only should be sampled

RPi.GPIO.BOTH

Used with wait_for_edge() (page 13) and add_event_detect() (page 13) to specify that all edges
should be sampled

16 Chapter 3. API Reference

CHAPTER

FOUR

CHANGELOG

4.1 Release 0.5 (2024-04-12)

• Fix setting pull on GPIO2 & 3 (#845)
• Added some bits to the Differences chapter on determining which GPIOs are reserved
• Added more information on the supported models of Raspberry Pi (#646)

4.2 Release 0.4 (2023-10-03)

• Add compatibility with Raspberry Pi 5 (auto-selection of correct gpiochip device)
• Add ability to override gpiochip selection; see GPIO Chip (page 5)
• Convert bouncetime -666 to None47 (bug compatibility, which also ensures this should work with GPIO Zero’s
rpigpio pin driver)

• Fix pull_up_down default on setup() (page 11)
• Fix changing pull_up_down of already-acquired input
• Ensure PWM.stop() (page 15) is idempotent

4.3 Release 0.3 (2022-10-14)

• Permit override of Pi revision code; see Pi Revision (page 3)
• Document alternate pin modes in Differences (page 3)

4.4 Release 0.2 (2022-10-14)

• Add support for RPI_REVISION (page 15) and RPI_INFO (page 15) globals
45 https://github.com/waveform80/rpi-lgpio/pull/8
46 https://github.com/waveform80/rpi-lgpio/issues/6
47 https://docs.python.org/3/library/constants.html#None

17

https://github.com/waveform80/rpi-lgpio/pull/8
https://github.com/waveform80/rpi-lgpio/issues/6
https://docs.python.org/3/library/constants.html#None

rpi-lgpio 0.5 Documentation, Release 0.5

4.5 Release 0.1 (2022-10-14)

• Initial release

18 Chapter 4. Changelog

CHAPTER

FIVE

LICENSE

The MIT License (MIT)
Copyright (c) 2022 Dave Jones48

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUTWARRANTYOFANYKIND, EXPRESS OR IMPLIED,
INCLUDINGBUTNOTLIMITEDTOTHEWARRANTIESOFMERCHANTABILITY, FITNESS FORAPAR-
TICULARPURPOSEANDNONINFRINGEMENT. INNOEVENTSHALLTHEAUTHORSORCOPYRIGHT
HOLDERS BE LIABLE FORANYCLAIM, DAMAGESOROTHER LIABILITY,WHETHER INANACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

48 dave@waveform.org.uk

19

mailto:dave@waveform.org.uk

rpi-lgpio 0.5 Documentation, Release 0.5

20 Chapter 5. License

PYTHON MODULE INDEX

r
RPi.GPIO, 11

21

rpi-lgpio 0.5 Documentation, Release 0.5

22 Python Module Index

INDEX

A
add_event_callback() (in module RPi.GPIO), 13
add_event_detect() (in module RPi.GPIO), 13

B
BCM (in module RPi.GPIO), 15
BOARD (in module RPi.GPIO), 15
BOTH (in module RPi.GPIO), 16

C
ChangeDutyCycle() (RPi.GPIO.PWM method), 14
ChangeFrequency() (RPi.GPIO.PWM method), 14
cleanup() (in module RPi.GPIO), 12

E
event_detected() (in module RPi.GPIO), 14

F
FALLING (in module RPi.GPIO), 16

G
getmode() (in module RPi.GPIO), 11
gpio_function() (in module RPi.GPIO), 14

H
HARD_PWM (in module RPi.GPIO), 16
HIGH (in module RPi.GPIO), 16

I
I2C (in module RPi.GPIO), 16
IN (in module RPi.GPIO), 16
input() (in module RPi.GPIO), 12

L
LOW (in module RPi.GPIO), 16

M
module

RPi.GPIO, 11

O
OUT (in module RPi.GPIO), 15
output() (in module RPi.GPIO), 12

P
PUD_DOWN (in module RPi.GPIO), 15
PUD_OFF (in module RPi.GPIO), 15
PUD_UP (in module RPi.GPIO), 15
PWM (class in RPi.GPIO), 14

R
RISING (in module RPi.GPIO), 16
RPi.GPIO

module, 11
RPI_INFO (in module RPi.GPIO), 15
RPI_REVISION (in module RPi.GPIO), 15

S
SERIAL (in module RPi.GPIO), 16
setmode() (in module RPi.GPIO), 11
setup() (in module RPi.GPIO), 11
setwarnings() (in module RPi.GPIO), 14
SPI (in module RPi.GPIO), 16
start() (RPi.GPIO.PWM method), 14
stop() (RPi.GPIO.PWM method), 15

W
wait_for_edge() (in module RPi.GPIO), 13

23

	Installation
	apt/deb package
	wheel package
	in venv without system packages
	in venv with system packages
	outside venv (system-wide)

	Differences
	Bug Compatible?
	Pi Revision
	GPIO Chip
	Alternate Pin Modes
	Stack Traces
	Simultaneous Access
	Debounce
	PWM on inputs

	API Reference
	Initialization
	Pin Usage
	Edge Detection
	Miscellaneous
	PWM
	Constants

	Changelog
	Release 0.5 (2024-04-12)
	Release 0.4 (2023-10-03)
	Release 0.3 (2022-10-14)
	Release 0.2 (2022-10-14)
	Release 0.1 (2022-10-14)

	License
	Python Module Index
	Index

