
rpi-lgpio 0.4 Documentation
Release 0.4

Dave Jones

Oct 03, 2023

CONTENTS

1 Installation 1

2 Differences 3

3 API Reference 9

4 Changelog 15

5 License 17

Python Module Index 19

Index 21

i

ii

CHAPTER

ONE

INSTALLATION

rpi-lgpio is distributed in several formats. The following sections detail installation from a variety of formats. But
first a warning:

Warning: You cannot install rpi-lgpio and rpi-gpio (aka RPi.GPIO, the library it emulates) at the same time, in
the same Python environment. Both packages attempt to install a module named RPi.GPIO and obviously this
will not work.

1.1 apt/deb package

If your distribution includes rpi-lgpio in its archive of apt packages, then you can simply:

$ sudo apt remove python3-rpi.gpio
$ sudo apt install python3-rpi-lgpio

If you wish to go back to rpi-gpio:

$ sudo apt remove python3-rpi-lgpio
$ sudo apt install python3-rpi.gpio

1.2 wheel package

If your distribution does not include a “native” packaging of rpi-lgpio, you can also install using pip (preferably in a
Python virtual environment):

$ pip uninstall rpi-gpio
$ pip install rpi-lgpio

On some platforms you may need to use a Python 3 specific alias of pip:

$ pip3 uninstall rpi-gpio
$ pip3 install rpi-lgpio

The instructions above assume that rpi-gpio is already installed by pip as well, but this may not be the case. For
instance, you may have rpi-gpio installed from, say, apt, but your particular distro doesn’t also include rpi-lgpio. In
this case you may need to remove rpi-gpio from apt first:

$ sudo apt remove python3-rpi.gpio
$ pip3 install rpi-lgpio

If you wish to install system-wide with pip, you may need to place sudo in front of the pip (or pip3) commands
too. Please be aware that on modern versions of pip you will need to explicitly accept the risk of trying to co-exist
apt and pip packages as follows:

1

rpi-lgpio 0.4 Documentation, Release 0.4

$ sudo pip3 install --break-system-packages rpi-lgpio

2 Chapter 1. Installation

CHAPTER

TWO

DIFFERENCES

Many of the assumptions underlying RPi.GPIO1 – that it has complete access to, and control over, the registers
controlling the GPIO pins – do not work when applied to the Linux gpiochip devices. To that end, while the library
strives as far as possible to be “bug compatible” with RPi.GPIO, there are differences in behaviour that may result in
incompatibility.

2.1 Bug Compatible?

What does being “bug compatible” mean? It is not enough for the library to implement the RPi.GPIO2 API. It must
also:

• Act, as far as possible, in the same way to the same calls with the same values
• Raise the same exception types, with the same messages, in the same circumstances
• Break (i.e. fail to operate correctly) in the same way, as far as possible

This last point may sound silly, but a library is always used in unexpected or undocumented ways by some applications.
Thus anything that tries to take the place of that librarymust domore than simply operate the same as the “documented
surface” would suggest.
That said, given that the underlying assumptions are fundamentally different this will not always be possible…

2.2 Pi Revision

The RPi.GPIO module attempts to determine the model and revision of Raspberry Pi board that it is running on
when the module is imported, raising RuntimeError3 at import time if it finds it is not running on a Raspberry
Pi. rpi-lgpio emulates this behaviour, but this can be inconvenient for certain situations including testing, but also
usage of rpi-lgpio on other single board computers.
To that end rpi-lgpio permits a Raspberry Pi revision code4 to be manually specified via the environment in the
RPI_LGPIO_REVISION value. For example:

$ RPI_LGPIO_REVISION='c03114' python3
Python 3.10.6 (main, Aug 10 2022, 11:40:04) [GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from RPi import GPIO
>>> GPIO.RPI_INFO
{'P1_REVISION': 3, 'REVISION': 'c03114', 'TYPE': 'Pi 4 Model B',
'MANUFACTURER': 'Sony UK', 'PROCESSOR': 'BCM2711', 'RAM': '4GB'}
>>> exit()
$ RPI_LGPIO_REVISION='902120' python3

(continues on next page)
1 https://pypi.org/project/RPi.GPIO/
2 https://pypi.org/project/RPi.GPIO/
3 https://docs.python.org/3/library/exceptions.html#RuntimeError
4 https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#new-style-revision-codes

3

https://pypi.org/project/RPi.GPIO/
https://pypi.org/project/RPi.GPIO/
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#new-style-revision-codes

rpi-lgpio 0.4 Documentation, Release 0.4

(continued from previous page)
Python 3.10.6 (main, Aug 10 2022, 11:40:04) [GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from RPi import GPIO
>>> GPIO.RPI_INFO
{'P1_REVISION': 3, 'REVISION': '902120', 'TYPE': 'Zero 2 W',
'MANUFACTURER': 'Sony UK', 'PROCESSOR': 'BCM2837', 'RAM': '512M'}
>>> exit()

2.3 GPIO Chip

The lgpio library needs to know the number of the /dev/gpiochip device it should open. By default this will be
calculated from the reported Pi Revision (page 3) (which may be customized as detailed in that section). In practice
this means the chip defaults to “4” on the Raspberry Pi Model 5B, and “0” on all other boards.
You may also specify the chip manually using the RPI_LGPIO_CHIP environment variable. For example:

$ ls /dev/gpiochip*
crw------- 1 root root 254, 0 Oct 1 15:00 /dev/gpiochip0
crw------- 1 root root 254, 1 Oct 1 15:00 /dev/gpiochip1
crw------- 1 root root 254, 2 Oct 1 15:00 /dev/gpiochip2
crw------- 1 root root 254, 3 Oct 1 15:00 /dev/gpiochip3
crw-rw----+ 1 root dialout 254, 4 Oct 1 15:00 /dev/gpiochip4
crw------- 1 root root 254, 5 Oct 1 15:00 /dev/gpiochip5
$ RPI_LGPIO_CHIP=5 python3
Python 3.11.5 (main, Aug 29 2023, 15:31:31) [GCC 13.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from RPi import GPIO
>>> GPIO.setmode(GPIO.BCM)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/usr/lib/python3/dist-packages/RPi/GPIO/__init__.py", line 513, in setmode
_chip = _check(lgpio.gpiochip_open(int(chip_num)))

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/lib/python3/dist-packages/lgpio.py", line 645, in gpiochip_open
return _u2i(handle)

^^^^^^^^^^^^
File "/usr/lib/python3/dist-packages/lgpio.py", line 458, in _u2i
raise error(error_text(v))

lgpio.error: 'can not open gpiochip'

This is primarily useful for other boards where the correct gpiochip device is something other than 0.

2.4 Alternate Pin Modes

The gpio_function() (page 12) function can be used to report the current mode of a pin. In RPi.GPIO this
may return several “alternate” mode values including SPI (page 14), I2C (page 14), and HARD_PWM (page 14).
rpi-lgpio will only ever return the basic IN (page 14) and OUT (page 13) values however, as the underlying gpiochip
device cannot report alternate modes.
For example, under RPi.GPIO:

>>> from RPi import GPIO
>>> GPIO.setmode(GPIO.BCM)
>>> GPIO.gpio_function(2) == GPIO.I2C
True

Under rpi-lgpio:

4 Chapter 2. Differences

rpi-lgpio 0.4 Documentation, Release 0.4

>>> from RPi import GPIO
>>> GPIO.setmode(GPIO.BCM)
>>> GPIO.gpio_function(2) == GPIO.I2C
False
>>> GPIO.gpio_function(2) == GPIO.IN
True

2.5 Stack Traces

While every effort has been made to raise the same exceptions with the same messages as RPi.GPIO, rpi-lgpio
does raise the exceptions from pure Python so the exceptions will generally include a larger stack trace than under
RPi.GPIO. For example, under RPi.GPIO:

>>> from RPi import GPIO
>>> GPIO.setmode(GPIO.BCM)
>>> GPIO.setup(26, GPIO.IN)
>>> GPIO.output(26, 1)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
RuntimeError: The GPIO channel has not been set up as an OUTPUT

Under rpi-lgpio:

>>> from RPi import GPIO
>>> GPIO.setmode(GPIO.BCM)
>>> GPIO.setup(26, GPIO.IN)
>>> GPIO.output(26, 1)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/home/dave/projects/rpi-lgpio/rpi-lgpio/RPi/GPIO.py", line 626, in output
_check_output(mode, 'The GPIO channel has not been set up as an OUTPUT')

File "/home/dave/projects/rpi-lgpio/rpi-lgpio/RPi/GPIO.py", line 242, in _check_
↪→output

raise RuntimeError(msg)
RuntimeError: The GPIO channel has not been set up as an OUTPUT

2.6 Simultaneous Access

Two processes using RPi.GPIO can happily control the same pin. This is simply not permitted by the Linux gpiochip
device and will fail under rpi-lgpio. For example, if another process has reserved GPIO26, and our script also tries
to allocate it:

>>> from RPi import GPIO
>>> GPIO.setmode(GPIO.BCM)
>>> GPIO.setup(26, GPIO.OUT)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/home/dave/projects/rpi-lgpio/rpi-lgpio/RPi/GPIO.py", line 569, in setup
initial = _check(lgpio.gpio_read(_chip, gpio))

File "/home/dave/envs/rpi-lgpio/lib/python3.10/site-packages/lgpio.py", line 894,
↪→ in gpio_read

return _u2i(_lgpio._gpio_read(handle&0xffff, gpio))
File "/home/dave/envs/rpi-lgpio/lib/python3.10/site-packages/lgpio.py", line 461,

↪→ in _u2i
raise error(error_text(v))

lgpio.error: 'GPIO not allocated'

2.5. Stack Traces 5

rpi-lgpio 0.4 Documentation, Release 0.4

2.7 Debounce

Debouncing of signals works fundamentally differently in RPi.GPIO, and in lgpio5 (the library underlying rpi-lgpio).
Rather than attempt to add more complexity in between users and lgpio, which would also inevitably slow down
edge detection (with all the attendant timing issues for certain applications) it is likely preferable to just live with this
difference, but document it thoroughly.
RPi.GPIO debounces signals by tracking the last timestamp at which it saw a specified edge and suppressing reports
of edges that occur within the specified number of milliseconds after that.
lgpio (and thus rpi-lgpio) debounces by waiting for a signal to be stable for the specified number of milliseconds
before reporting the edge.
For some applications, there will be little/no difference other than rpi-lgpio reporting an edge a few milliseconds
later than RPi.GPIO would (specifically, by the amount of debounce requsted). The following diagram shows the
waveform from a “bouncy” switch being pressed once, along with the positions in time where RPi.GPIO and rpi-lgpio
would report the rising edge when debounce of 3ms is requested:

0ms 2ms 4ms 6ms 8ms
| | | | |
| ┌─┐ ┌─┐ ┌─────────────────┐
| │ │ │ │ │ : │
| │ │ │ │ │ : │
───────┘ └─┘ └─┘ : └────────────────────────

: :
: :

RPi.GPIO rpi-lgpio

RPi.GPIO reports the edge at 2ms, then suppresses the edges at 3ms and 4ms because they are within 3ms of the
last edge. By contrast, rpi-lgpio ignores the first and second rising edges (because they didn’t stay stable for 3ms) and
only reports the third edge at 7ms (after it’s spent 3ms stable).
However, consider this same scenario if debounce of 2ms is requested:

0ms 2ms 4ms 6ms 8ms
| | | | |
| ┌─┐ ┌─┐ ┌─────────────────┐
| │ │ │ │ │ : │
| │ │ │ │ │ : │
───────┘ └─┘ └─┘ : └────────────────────────

: : :
: : :

RPi.GPIO RPi.GPIO rpi-lgpio

In this case, RPi.GPIO reports the switch twice because the third edge is still 2ms after the first edge. However, rpi-
lgpio only reports the switch once because only one edge stayed stable for 2ms. Also note in this case, that rpi-lgpio’s
report time has moved back to 6ms because it’s not waiting as long for stability.
This implies that youmay find shorter debounce periods preferable when working with rpi-lgpio, than with RPi.GPIO.
They will still debounce effectively, but will reduce the delay in reporting edges.
One final scenario to consider is a waveform of equally spaced, repeating pulses (like PWM) every 2ms:

0ms 2ms 4ms 6ms 8ms 10ms 12ms
| | | | | | |
| ┌────┐ ┌────┐ ┌────┐ ┌────┐ ┌────┐ ┌────┐ ┌──
| │ │ │ │ │ │ │ │ │ │ │ │ │
| │ │ │ │ │ │ │ │ │ │ │ │ │
───────┘ └──┘ └──┘ └──┘ └──┘ └──┘ └──┘

: : : :

(continues on next page)

5 https://abyz.me.uk/lg/py_lgpio.html

6 Chapter 2. Differences

https://abyz.me.uk/lg/py_lgpio.html

rpi-lgpio 0.4 Documentation, Release 0.4

(continued from previous page)
: : : :

RPi.GPIO RPi.GPIO RPi.GPIO RPi.GPIO

If we request rising edge detection with a debounce of 3ms, RPi.GPIO reports half of the edges; it’s suppressing
every other edge as they occur within 3ms of the edge preceding them. rpi-lgpio, on the other hand, reports no edges
at all because none of them stay stable for 3ms.

2.8 PWM on inputs

RPi.GPIO (probably erroneously) permits PWM objects to continue operating on pins that are switched to inputs:

>>> from RPi import GPIO
>>> GPIO.setmode(GPIO.BCM)
>>> GPIO.setup(26, GPIO.OUT)
>>> p = GPIO.PWM(26, 1000)
>>> p.start(75)
>>> GPIO.setup(26, GPIO.IN)
>>> p.stop()
>>> p.start(75)
>>> p.stop()

This will not work under rpi-lgpio:

>>> from RPi import GPIO
>>> GPIO.setmode(GPIO.BCM)
>>> GPIO.setup(26, GPIO.OUT)
>>> p = GPIO.PWM(26, 1000)
>>> p.start(75)
>>> GPIO.setup(26, GPIO.IN)
>>> p.stop()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/home/dave/projects/rpi-lgpio/rpi-lgpio/RPi/GPIO.py", line 190, in stop
lgpio.tx_pwm(_chip, self._gpio, 0, 0)

File "/home/dave/envs/rpi-lgpio/lib/python3.10/site-packages/lgpio.py", line␣
↪→1074, in tx_pwm

return _u2i(_lgpio._tx_pwm(
File "/home/dave/envs/rpi-lgpio/lib/python3.10/site-packages/lgpio.py", line 461,

↪→ in _u2i
raise error(error_text(v))

lgpio.error: 'bad PWM micros'

Though note that the error occurs when the PWM (page 12) object is next acted upon, rather than at the point when
the GPIO is switched to an input.

2.8. PWM on inputs 7

rpi-lgpio 0.4 Documentation, Release 0.4

8 Chapter 2. Differences

CHAPTER

THREE

API REFERENCE

The API of rpi-lgpio (naturally) follows that of rpi-gpio (aka RPi.GPIO) as closely as possible. As such the following
is simply a re-iteration of that API.

3.1 Initialization

RPi.GPIO.setmode(new_mode)
Set up the numbering mode to use for the pins on the board. The options for new_mode are:

• BOARD (page 13) - Use Raspberry Pi board numbers
• BCM (page 13) - Use Broadcom GPIO 00..nn numbers

If a numberingmode has already been set, and new_mode is not the same as the result ofgetmode() (page 9),
a ValueError6 is raised.

Parameters
new_mode (int7) – The new numbering mode to apply

RPi.GPIO.getmode()

Get the numbering mode used for the pins on the board. Returns BOARD (page 13), BCM (page 13) or None8.
RPi.GPIO.setup(chanlist, direction, pull_up_down=20, initial=None)

Set up a GPIO channel or iterable of channels with a direction and (optionally, for inputs) pull/up down control,
or (optionally, for outputs) and initial state.
The GPIOs to affect are listed in chanlist which may be any iterable. The direction is either IN (page 14) or
OUT (page 13).
If direction is IN (page 14), then pull_up_down may specify one of the values PUD_UP (page 13) to set the
internal pull-up resistor, PUD_DOWN (page 13) to set the internal pull-down resistor, or the default PUD_OFF
(page 13) which disables the internal pulls.
If direction is OUT (page 13), then initial may specify zero or one to indicate the initial state of the output.

Parameters
• chanlist (list9 or tuple10 or int11) – The list of GPIO channels to setup
• direction (int12) – Whether the channels should act as inputs or outputs
• pull_up_down (int13 or None) – The internal pull resistor (if any) to enable for
inputs

• initial (bool14 or int15 or None) – The initial state of an output
6 https://docs.python.org/3/library/exceptions.html#ValueError
7 https://docs.python.org/3/library/functions.html#int
8 https://docs.python.org/3/library/constants.html#None

9

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

rpi-lgpio 0.4 Documentation, Release 0.4

RPi.GPIO.cleanup(chanlist=None)
Reset the specified GPIO channels (or all channels if none are specified) to INPUT with no pull-up / pull-down
and no event detection.

Parameters
chanlist (list16 or tuple17 or int18 or None) – The channel, or channels to
clean up

3.2 Pin Usage

RPi.GPIO.input(channel)
Input from a GPIO channel. Returns 1 or 0.
This can also be called on a GPIO output, in which case the value returned will be the last state set on the
GPIO.

Parameters
channel (int19) – The board pin number or BCM number depending on setmode()
(page 9)

RPi.GPIO.output(channel, value)
Output to a GPIO channel or list of channels. The value can be the integer LOW (page 14) or HIGH (page 14),
or a list of integers.
If a list of channels is specified, with a single integer for the value then it is applied to all channels. Otherwise,
the length of the two lists must match.

Parameters
• channel (list20 or tuple21 or int22) – The GPIO channel, or list of GPIO
channels to output to

• value (list23 or tuple24 or int25) – The value, or list of values to output
9 https://docs.python.org/3/library/stdtypes.html#list
10 https://docs.python.org/3/library/stdtypes.html#tuple
11 https://docs.python.org/3/library/functions.html#int
12 https://docs.python.org/3/library/functions.html#int
13 https://docs.python.org/3/library/functions.html#int
14 https://docs.python.org/3/library/functions.html#bool
15 https://docs.python.org/3/library/functions.html#int
16 https://docs.python.org/3/library/stdtypes.html#list
17 https://docs.python.org/3/library/stdtypes.html#tuple
18 https://docs.python.org/3/library/functions.html#int
19 https://docs.python.org/3/library/functions.html#int
20 https://docs.python.org/3/library/stdtypes.html#list
21 https://docs.python.org/3/library/stdtypes.html#tuple
22 https://docs.python.org/3/library/functions.html#int
23 https://docs.python.org/3/library/stdtypes.html#list
24 https://docs.python.org/3/library/stdtypes.html#tuple
25 https://docs.python.org/3/library/functions.html#int

10 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

rpi-lgpio 0.4 Documentation, Release 0.4

3.3 Edge Detection

RPi.GPIO.wait_for_edge(channel, edge, bouncetime=None, timeout=None)
Wait for an edge on the specified channel. Returns channel or None26 if timeout elapses before the specified
edge occurs.

Note: Debounce works significantly differently in rpi-lgpio than it does in rpi-gpio; please see Debounce
(page 6) for more information on the differences.

Parameters
• channel (int27) – The board pin number or BCM number depending on setmode()
(page 9) to watch for changes

• edge (int28) – One of the constants RISING (page 14), FALLING (page 14), or BOTH
(page 14)

• bouncetime (int29 or None) – Time (in ms) used to debounce signals
• timeout (int30 or None) – Maximum time (in ms) to wait for the edge

RPi.GPIO.add_event_detect(channel, edge, callback=None, bouncetime=None)
Start background edge detection on the specified GPIO channel.
If callback is specified, it must be a callable that will be executed when the specified edge is seen on the GPIO
channel. The callable must accept a single parameter: the channel on which the edge was detected.

Note: Debounce works significantly differently in rpi-lgpio than it does in rpi-gpio; please see Debounce
(page 6) for more information on the differences.

Parameters
• channel (int31) – The board pin number or BCM number depending on setmode()
(page 9) to watch for changes

• edge (int32) – One of the constants RISING (page 14), FALLING (page 14), or BOTH
(page 14)

• callback (callable or None) – The callback to run when an edge is detected;
must take a single integer parameter of the channel on which the edge was detected

• bouncetime (int33 or None) – Time (in ms) used to debounce signals

RPi.GPIO.add_event_callback(channel, callback)
Add a callback to the specified GPIO channel which must already have been set for background edge detection
with add_event_detect() (page 11).

Parameters
• channel (int34) – The board pin number or BCM number depending on setmode()
(page 9) to watch for changes

26 https://docs.python.org/3/library/constants.html#None
27 https://docs.python.org/3/library/functions.html#int
28 https://docs.python.org/3/library/functions.html#int
29 https://docs.python.org/3/library/functions.html#int
30 https://docs.python.org/3/library/functions.html#int
31 https://docs.python.org/3/library/functions.html#int
32 https://docs.python.org/3/library/functions.html#int
33 https://docs.python.org/3/library/functions.html#int

3.3. Edge Detection 11

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

rpi-lgpio 0.4 Documentation, Release 0.4

• callback – The callback to run when an edge is detected; must take a single integer
parameter of the channel on which the edge was detected

RPi.GPIO.event_detected(channel)

Returns True35 if an edge has occurred on the specified channel since the last query of the channel (if any).
Querying this will also reset the internal edge detected flag for this channel.
The channel must previously have had edge detection enabled with add_event_detect() (page 11).

Parameters
channel (int36) – The board pin number or BCM number depending on setmode()
(page 9)

3.4 Miscellaneous

RPi.GPIO.gpio_function(channel)

Return the current GPIO function (IN (page 14), OUT (page 13), HARD_PWM (page 14), SERIAL (page 14),
I2C (page 14), SPI (page 14)) for the specified channel.

Note: This function will only return IN (page 14) or OUT (page 13) under rpi-lgpio as the underlying kernel
device cannot report the alt-mode of GPIO pins.

Parameters
channel (int37) – The board pin number or BCM number depending on setmode()
(page 9)

RPi.GPIO.setwarnings(value)
Enable or disable warning messages. These are mostly produced when calling setup() (page 9) or
cleanup() (page 10) to change channel modes.

3.5 PWM

class RPi.GPIO.PWM(channel, frequency)
Initializes and controls software-based PWM (Pulse Width Modulation) on the specified channel at frequency
(in Hz).
Call start() (page 12) and stop() (page 13) to generate and stop the actual output respectively.
ChangeFrequency() (page 12) and ChangeDutyCycle() (page 12) can also be used to control the
output.

Note: Letting the PWM (page 12) object go out of scope (and be garbage collected) will implicitly stop the
PWM.

ChangeDutyCycle(dc)
Changes the duty cycle (percentage of the time that the pin is “on”) to dc.

ChangeFrequency(frequency)

Changes the frequency of rising edges output by the pin.

34 https://docs.python.org/3/library/functions.html#int
35 https://docs.python.org/3/library/constants.html#True
36 https://docs.python.org/3/library/functions.html#int
37 https://docs.python.org/3/library/functions.html#int

12 Chapter 3. API Reference

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

rpi-lgpio 0.4 Documentation, Release 0.4

start(dc)
Starts outputting a wave on the assigned pin with a duty-cycle (which must be between 0 and 100) given
by dc.

Parameters
dc (float38) – The duty-cycle (the percentage of time the pin is “on”)

stop()

Stops outputting a wave on the assigned pin, and sets the pin’s state to off.

3.6 Constants

RPi.GPIO.RPI_INFO

A dictionary that provides information about the model of Raspberry Pi that the library is loaded onto. Includes
the following keys:
P1_REVISION

The revision of the P1 header. 0 indicates no P1 header (typical on the compute module range), 1 and 2
vary on the oldest Raspberry Pimodels, and 3 is the typical 40-pin header present on all modern Raspberry
Pis.

REVISION
The hex board revision code39 as a str40.

TYPE
The name of the Pi model, e.g. “Pi 4 Model B”

MANUFACTURER
The name of the board manufacturer, e.g. “Sony UK”

PROCESSOR
The name of the SoC used on the board, e.g. “BCM2711”

RAM
The amount of RAM installed on the board, e.g. “4GB”

The board revision can be overridden with the RPI_LGPIO_REVISION environment variable; see Pi Revi-
sion (page 3) for further details.

RPi.GPIO.RPI_REVISION

The same as the P1_REVISION key in RPI_INFO (page 13)
RPi.GPIO.BOARD

Indicates to setmode() (page 9) that physical board numbering is requested
RPi.GPIO.BCM

Indicates to setmode() (page 9) that GPIO numbering is requested
RPi.GPIO.PUD_OFF

Used with setup() (page 9) to disable internal pull resistors on an input
RPi.GPIO.PUD_DOWN

Used with setup() (page 9) to enable the internal pull-down resistor on an input
RPi.GPIO.PUD_UP

Used with setup() (page 9) to enable the internal pull-up resistor on an input

38 https://docs.python.org/3/library/functions.html#float
39 https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#new-style-revision-codes
40 https://docs.python.org/3/library/stdtypes.html#str

3.6. Constants 13

https://docs.python.org/3/library/functions.html#float
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#new-style-revision-codes
https://docs.python.org/3/library/stdtypes.html#str

rpi-lgpio 0.4 Documentation, Release 0.4

RPi.GPIO.OUT

Used with setup() (page 9) to set a GPIO to an output, and gpio_function() (page 12) to report a
GPIO is an output

RPi.GPIO.IN

Used with setup() (page 9) to set a GPIO to an input, and gpio_function() (page 12) to report a
GPIO is an input

RPi.GPIO.HARD_PWM

RPi.GPIO.SERIAL

RPi.GPIO.I2C

RPi.GPIO.SPI

Used with gpio_function() (page 12) to indicate “alternate” modes of certain GPIO pins.

Note: In rpi-lgpio these values will never be returned as the kernel device cannot report if pins are in alternate
modes.

RPi.GPIO.LOW = 0

Used with output() (page 10) to turn an output GPIO off
RPi.GPIO.HIGH = 1

Used with output() (page 10) to turn an output GPIO on
RPi.GPIO.RISING

Used with wait_for_edge() (page 11) and add_event_detect() (page 11) to specify that rising
edges only should be sampled

RPi.GPIO.FALLING

Used with wait_for_edge() (page 11) and add_event_detect() (page 11) to specify that falling
edges only should be sampled

RPi.GPIO.BOTH

Used with wait_for_edge() (page 11) and add_event_detect() (page 11) to specify that all edges
should be sampled

14 Chapter 3. API Reference

CHAPTER

FOUR

CHANGELOG

4.1 Release 0.4 (2023-10-03)

• Add compatibility with Raspberry Pi 5 (auto-selection of correct gpiochip device)
• Add ability to override gpiochip selection; see GPIO Chip (page 4)
• Convert bouncetime -666 to None41 (bug compatibility, which also ensures this should work with GPIO Zero’s
rpigpio pin driver)

• Fix pull_up_down default on setup() (page 9)
• Fix changing pull_up_down of already-acquired input
• Ensure PWM.stop() (page 13) is idempotent

4.2 Release 0.3 (2022-10-14)

• Permit override of Pi revision code; see Pi Revision (page 3)
• Document alternate pin modes in Differences (page 3)

4.3 Release 0.2 (2022-10-14)

• Add support for RPI_REVISION (page 13) and RPI_INFO (page 13) globals

4.4 Release 0.1 (2022-10-14)

• Initial release

41 https://docs.python.org/3/library/constants.html#None

15

https://docs.python.org/3/library/constants.html#None

rpi-lgpio 0.4 Documentation, Release 0.4

16 Chapter 4. Changelog

CHAPTER

FIVE

LICENSE

The MIT License (MIT)
Copyright (c) 2022 Dave Jones42

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUTWARRANTYOFANYKIND, EXPRESS OR IMPLIED,
INCLUDINGBUTNOTLIMITEDTOTHEWARRANTIESOFMERCHANTABILITY, FITNESS FORAPAR-
TICULARPURPOSEANDNONINFRINGEMENT. INNOEVENTSHALLTHEAUTHORSORCOPYRIGHT
HOLDERS BE LIABLE FORANYCLAIM, DAMAGESOROTHER LIABILITY,WHETHER INANACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

42 dave@waveform.org.uk

17

mailto:dave@waveform.org.uk

rpi-lgpio 0.4 Documentation, Release 0.4

18 Chapter 5. License

PYTHON MODULE INDEX

r
RPi.GPIO, 9

19

rpi-lgpio 0.4 Documentation, Release 0.4

20 Python Module Index

INDEX

A
add_event_callback() (in module RPi.GPIO), 11
add_event_detect() (in module RPi.GPIO), 11

B
BCM (in module RPi.GPIO), 13
BOARD (in module RPi.GPIO), 13
BOTH (in module RPi.GPIO), 14

C
ChangeDutyCycle() (RPi.GPIO.PWM method), 12
ChangeFrequency() (RPi.GPIO.PWM method), 12
cleanup() (in module RPi.GPIO), 10

E
event_detected() (in module RPi.GPIO), 12

F
FALLING (in module RPi.GPIO), 14

G
getmode() (in module RPi.GPIO), 9
gpio_function() (in module RPi.GPIO), 12

H
HARD_PWM (in module RPi.GPIO), 14
HIGH (in module RPi.GPIO), 14

I
I2C (in module RPi.GPIO), 14
IN (in module RPi.GPIO), 14
input() (in module RPi.GPIO), 10

L
LOW (in module RPi.GPIO), 14

M
module

RPi.GPIO, 9

O
OUT (in module RPi.GPIO), 13
output() (in module RPi.GPIO), 10

P
PUD_DOWN (in module RPi.GPIO), 13
PUD_OFF (in module RPi.GPIO), 13
PUD_UP (in module RPi.GPIO), 13
PWM (class in RPi.GPIO), 12

R
RISING (in module RPi.GPIO), 14
RPi.GPIO

module, 9
RPI_INFO (in module RPi.GPIO), 13
RPI_REVISION (in module RPi.GPIO), 13

S
SERIAL (in module RPi.GPIO), 14
setmode() (in module RPi.GPIO), 9
setup() (in module RPi.GPIO), 9
setwarnings() (in module RPi.GPIO), 12
SPI (in module RPi.GPIO), 14
start() (RPi.GPIO.PWM method), 12
stop() (RPi.GPIO.PWM method), 13

W
wait_for_edge() (in module RPi.GPIO), 11

21

	Installation
	apt/deb package
	wheel package

	Differences
	Bug Compatible?
	Pi Revision
	GPIO Chip
	Alternate Pin Modes
	Stack Traces
	Simultaneous Access
	Debounce
	PWM on inputs

	API Reference
	Initialization
	Pin Usage
	Edge Detection
	Miscellaneous
	PWM
	Constants

	Changelog
	Release 0.4 (2023-10-03)
	Release 0.3 (2022-10-14)
	Release 0.2 (2022-10-14)
	Release 0.1 (2022-10-14)

	License
	Python Module Index
	Index

